A Pan-Cancer Patient-Derived Xenograft Histology Image Repository with Genomic and Pathologic Annotations Enables Deep Learning Analysis

Author:

White Brian S.1ORCID,Woo Xing Yi12ORCID,Koc Soner3ORCID,Sheridan Todd1ORCID,Neuhauser Steven B.4ORCID,Wang Shidan5ORCID,Evrard Yvonne A.6ORCID,Chen Li6ORCID,Foroughi pour Ali1ORCID,Landua John D.7ORCID,Mashl R. Jay8ORCID,Davies Sherri R.8ORCID,Fang Bingliang9ORCID,Raso Maria Gabriela9ORCID,Evans Kurt W.9ORCID,Bailey Matthew H.10ORCID,Chen Yeqing11ORCID,Xiao Min11ORCID,Rubinstein Jill C.1ORCID,Sanderson Brian J.1ORCID,Lloyd Michael W.4ORCID,Domanskyi Sergii1ORCID,Dobrolecki Lacey E.7ORCID,Fujita Maihi12ORCID,Fujimoto Junya9ORCID,Xiao Guanghua5ORCID,Fields Ryan C.8ORCID,Mudd Jacqueline L.8ORCID,Xu Xiaowei11ORCID,Hollingshead Melinda G.13ORCID,Jiwani Shahanawaz6ORCID,Acevedo Saul3ORCID, ,Davis-Dusenbery Brandi N.3ORCID,Robinson Peter N.1ORCID,Moscow Jeffrey A.13ORCID,Doroshow James H.13ORCID,Mitsiades Nicholas7ORCID,Kaochar Salma7ORCID,Pan Chong-xian14ORCID,Carvajal-Carmona Luis G.14ORCID,Welm Alana L.12ORCID,Welm Bryan E.12ORCID,Govindan Ramaswamy8ORCID,Li Shunqiang8ORCID,Davies Michael A.9ORCID,Roth Jack A.9ORCID,Meric-Bernstam Funda9ORCID,Xie Yang5ORCID,Herlyn Meenhard11ORCID,Ding Li8ORCID,Lewis Michael T.7ORCID,Bult Carol J.4ORCID,Dean Dennis A.3ORCID,Chuang Jeffrey H.1ORCID

Affiliation:

1. The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut. 1

2. Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. 2

3. Velsera, Charlestown, Massachusetts. 3

4. The Jackson Laboratory, Bar Harbor, Maine. 4

5. University of Texas Southwestern Medical Center, Dallas, Texas. 5

6. Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland. 6

7. Baylor College of Medicine, Houston, Texas. 7

8. Washington University School of Medicine, St. Louis, Missouri. 8

9. University of Texas MD Anderson Cancer Center, Houston, Texas. 9

10. Simmons Center for Cancer Research, Brigham Young University, Provo, Utah. 10

11. The Wistar Institute, Philadelphia, Pennsylvania. 11

12. Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah. 12

13. National Cancer Institute, Bethesda, Maryland. 13

14. University of California, Davis, Davis, California. 14

Abstract

Abstract Patient-derived xenografts (PDX) model human intra- and intertumoral heterogeneity in the context of the intact tissue of immunocompromised mice. Histologic imaging via hematoxylin and eosin (H&E) staining is routinely performed on PDX samples, which could be harnessed for computational analysis. Prior studies of large clinical H&E image repositories have shown that deep learning analysis can identify intercellular and morphologic signals correlated with disease phenotype and therapeutic response. In this study, we developed an extensive, pan-cancer repository of >1,000 PDX and paired parental tumor H&E images. These images, curated from the PDX Development and Trial Centers Research Network Consortium, had a range of associated genomic and transcriptomic data, clinical metadata, pathologic assessments of cell composition, and, in several cases, detailed pathologic annotations of neoplastic, stromal, and necrotic regions. The amenability of these images to deep learning was highlighted through three applications: (i) development of a classifier for neoplastic, stromal, and necrotic regions; (ii) development of a predictor of xenograft-transplant lymphoproliferative disorder; and (iii) application of a published predictor of microsatellite instability. Together, this PDX Development and Trial Centers Research Network image repository provides a valuable resource for controlled digital pathology analysis, both for the evaluation of technical issues and for the development of computational image–based methods that make clinical predictions based on PDX treatment studies. Significance: A pan-cancer repository of >1,000 patient-derived xenograft hematoxylin and eosin–stained images will facilitate cancer biology investigations through histopathologic analysis and contributes important model system data that expand existing human histology repositories.

Funder

Cancer Moonshot

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3