Aeromonas sobria as a potential candidate for bioremediation of heavy metal from contaminated environments

Author:

Qurbani Karzan,Khdir Karokh,Sidiq Avin,Hamzah Haider,Hussein Safin,Hamad Zhilia,Abdulla Rayan,Abdulla Banw,Azizi Zahra

Abstract

AbstractThe uncontrolled discharge of industrial wastes causes the accumulation of high heavy metal concentrations in soil and water, leading to many health issues. In the present study, a Gram-negative Aeromonas sobria was isolated from heavily contaminated soil in the Tanjaro area, southwest of Sulaymaniyah city in the Kurdistan Region of Iraq; then, we assessed its ability to uptake heavy metals. A. sobria was molecularly identified based on the partial amplification of 16S rRNA using novel primers. The sequence was aligned with 33 strains to analyze phylogenetic relationships by maximum likelihood. Based on maximum tolerance concentration (MTC), A. sobria could withstand Zn, Cu, and Ni at concentrations of 5, 6, and 8 mM, respectively. ICP-OES data confirmed that A. sobria reduced 54.89% (0.549 mM) of the Cu, 62.33% (0.623 mM) of the Ni, and 36.41% (0.364 mM) of the Zn after 72 h in the culture medium. Transmission electron microscopy (TEM) showed that A. sobria accumulated both Cu and Ni, whereas biosorption was suggested for the Zn. These findings suggest that metal-resistant A. sobria could be a promising candidate for heavy metal bioremediation in polluted areas. However, more broadly, research is required to assess the feasibility of exploiting A. sobria in situ.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3