Distribution, source apportionment, and risk analysis of heavy metals in river sediments of the Urmia Lake basin

Author:

Rezapour Salar,Asadzadeh Farrokh,Nouri Amin,Khodaverdiloo Habib,Heidari Mohammad

Abstract

AbstractThe anthropogenic heavy metal dissemination in the natural environment through riverine sediments is a major ecological and public health concern around the world. This study gives insight into the source apportionment and potential ecological and health risks of heavy metals in river sediments of the Urmia Lake basin, a natural world heritage located in northwestern Iran. A comprehensive sediment sampling was conducted in seven major rivers feeding the basin during the summer and winter of 2021. Samples were analyzed for zinc (Zn), copper (Cu), cadmium (Cd), lead (Pb), and nickel (Ni) contents and a suite of chemical and physical properties. Subsequently, Pollution Index (PI), Pollution Load Index (PLI), Ecological Risk (ER), Hazard Quotients (HQ), Hazard Index (HI), and Carcinogenic Risk (CR) indices were determined. The mean concentration of heavy metals in all rivers’ sediments exhibited the descending order of Ni > Zn > Pb > Cu > Cd during both summer and winter. Multivariate analysis suggested that Zn was primarily initiated from natural processes, Cd and Pb were affected by human activities, and Cu along Ni were derived from natural and anthropogenic factors. The PI unveiled that most sediment samples were unpolluted to slightly polluted by Zn, Cu, and Pb, and slightly to moderately polluted by Cd. PLI and ER indices demonstrated that the sediment poses non to moderate pollution and low to moderate ecological risk, respectively. Using a human health risk approach, we found that the HI values of all heavy metals and THI were less than one for children and adults implying non-carcinogenic risk in the analyzed sediments. Carcinogenic effects of Cd and Pb at all rivers sediments via ingestion, inhalation, and dermal contact were almost within tolerable risks (1 × 10−6 to 1 × 10−4) for children and adults. PI, PLI, ER, HQ, HI, and CR index values of sediment samples during the summer were higher than those during the winter. This is attributed to the greater heavy metal concentrations and the lower water flow during summer. Our results provide practical information for better management and control of heavy metal pollution in aquatic-sedimentary ecosystems.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3