Dynamic interplay between sortilin and syndecan-1 contributes to prostate cancer progression

Author:

Lazniewska Joanna,Li Ka Lok,Johnson Ian R. D.,Sorvina Alexandra,Logan Jessica M.,Martini Carmela,Moore Courtney,Ung Ben S.-Y.,Karageorgos Litsa,Hickey Shane M.,Prabhakaran Sarita,Heatlie Jessica K.,Brooks Robert D.,Huzzell Chelsea,Warnock Nicholas I.,Ward Mark P.,Mohammed Bashir,Tewari Prerna,Martin Cara,O’Toole Sharon,Edgerton Laura Bogue,Bates Mark,Moretti Paul,Pitson Stuart M.,Selemidis Stavros,Butler Lisa M.,O’Leary John J.,Brooks Douglas A.

Abstract

AbstractProstate cancer (PCa) development and progression relies on the programming of glucose and lipid metabolism, and this involves alterations in androgen receptor expression and signalling. Defining the molecular mechanism that underpins this metabolic programming will have direct significance for patients with PCa who have a poor prognosis. Here we show that there is a dynamic balance between sortilin and syndecan-1, that reports on different metabolic phenotypes. Using tissue microarrays, we demonstrated by immunohistochemistry that sortilin was highly expressed in low-grade cancer, while syndecan-1 was upregulated in high-grade disease. Mechanistic studies in prostate cell lines revealed that in androgen-sensitive LNCaP cells, sortilin enhanced glucose metabolism by regulating GLUT1 and GLUT4, while binding progranulin and lipoprotein lipase (LPL) to limit lipid metabolism. In contrast, in androgen-insensitive PC3 cells, syndecan-1 was upregulated, interacted with LPL and colocalised with β3 integrin to promote lipid metabolism. In addition, androgen-deprived LNCaP cells had decreased expression of sortilin and reduced glucose-metabolism, but increased syndecan-1 expression, facilitating interactions with LPL and possibly β3 integrin. We report a hitherto unappreciated molecular mechanism for PCa, which may have significance for disease progression and how androgen-deprivation therapy might promote castration-resistant PCa.

Funder

Envision Sciences Pty Ltd

NHMRC development grant

Movember Foundation/PCa Foundation of Australia’s Research Program

MTP Connect Biomedical Translation Bridge Program grant

Cancer Council SA Beat Cancer Grant

Cancer Council of SA Beat Cancer Principal Research Fellowship

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3