EEG signatures change during unilateral Yogi nasal breathing

Author:

Niazi Imran Khan,Navid Muhammad Samran,Bartley Jim,Shepherd Daniel,Pedersen Mangor,Burns Georgina,Taylor Denise,White David E.

Abstract

AbstractAirflow through the left-and-right nostrils is said to be entrained by an endogenous nasal cycle paced by both poles of the hypothalamus. Yogic practices suggest, and scientific evidence demonstrates, that right-nostril breathing is involved with relatively higher sympathetic activity (arousal states), while left-nostril breathing is associated with a relatively more parasympathetic activity (stress alleviating state). The objective of this study was to further explore this laterality by controlling nasal airflow and observing patterns of cortical activity through encephalographic (EEG) recordings. Thirty subjects participated in this crossover study. The experimental session consisted of a resting phase (baseline), then a period of unilateral nostril breathing (UNB) using the dominant nasal airway, followed by UNB using the non-dominant nasal airway. A 64-channel EEG was recorded throughout the whole session. The effects of nostril-dominance, and nostril-lateralization were assessed using the power spectral density of the neural activity. The differences in power-spectra and source localization were calculated between EEG recorded during UNB and baseline for delta, theta, alpha, beta and gamma bands. Cluster-based permutation tests showed that compared to baseline, EEG spectral power was significantly (1) decreased in all frequency bands for non-dominant nostril UNB, (2) decreased in alpha, beta and gamma bands for dominant nostril UNB, (3) decreased in all bands for left nostril UNB, and (4) decreased in all bands except delta for right nostril UNB. The beta band showed the most widely distributed changes across the scalp. our source localisation results show that breathing with the dominant nostril breathing increases EEG power in the left inferior frontal (alpha band) and left parietal lobule (beta band), whereas non-dominant nostril breathing is related to more diffuse and bilateral effects in posterior areas of the brain.These preliminary findings may stimulate further research in the area, with potential applications to tailored treatment of brain disorders associated with disruption of sympathetic and parasympathetic activity.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference40 articles.

1. Kleitman, N. Sleep and Wakefulness (University of Chicago Press, 1963).

2. Kayser, R. Die exacte messung der luftdurchgangigkeit der nase. Arch. Laryngol. 94, 149–156 (1895).

3. Price, A. & Eccles, R. Nasal airflow and brain activity: Is there a link?. J. Laryngol. Otol. 130, 794–799 (2016).

4. Werntz, D., Bickford, R., Bloom, F. & Shannahoff-Khalsa, D. Alternating cerebral hemispheric activity and the lateralization of autonomic nervous function. Hum. Neurobiol. 2, 39–43 (1983).

5. Shannahoff-Khalsa, D. Psychophysiological states: The ultradian dynamics of mind–body interactions. Int. Rev. Neurobiol. 80, 1–220 (2008).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3