Author:
Yoshida Naofumi,Yamashita Tomoya,Kishino Shigenobu,Watanabe Hikaru,Sasaki Kengo,Sasaki Daisuke,Tabata Tokiko,Sugiyama Yuta,Kitamura Nahoko,Saito Yoshihiro,Emoto Takuo,Hayashi Tomohiro,Takahashi Tomoya,Shinohara Masakazu,Osawa Ro,Kondo Akihiko,Yamada Takuji,Ogawa Jun,Hirata Ken-ichi
Abstract
AbstractFaecal lipopolysaccharides (LPS) have attracted attention as potent elements to explain a correlation between the gut microbiota and cardiovascular disease (CVD) progression. However, the underlying mechanism of how specific gut bacteria contribute to faecal LPS levels remains unclear. We retrospectively analysed the data of 92 patients and found that the abundance of the genus Bacteroides was significantly and negatively correlated with faecal LPS levels. The controls showed a higher abundance of Bacteroides than that in the patients with CVD. The endotoxin units of the Bacteroides LPS, as determined by the limulus amoebocyte lysate (LAL) tests, were drastically lower than those of the Escherichia coli LPS; similarly, the Bacteroides LPS induced relatively low levels of pro-inflammatory cytokine production and did not induce sepsis in mice. Fermenting patient faecal samples in a single-batch fermentation system with Bacteroides probiotics led to a significant increase in the Bacteroides abundance, suggesting that the human gut microbiota could be manipulated toward decreasing the faecal LPS levels. In the clinical perspective, Bacteroides decrease faecal LPS levels because of their reduced LAL activity; therefore, increasing Bacteroides abundance might serve as a novel therapeutic approach to prevent CVD via reducing faecal LPS levels and suppressing immune responses.
Funder
Japan Society for the Promotion of Science KAKENHI
Japanese Circulation Society
PRIME from the Japan Agency for Medical Research and Development
Japan Innovative Bioproduction Kobe from the Ministry of Education, Culture, Sports and Technology, The Hyogo Science and Technology Association
Publisher
Springer Science and Business Media LLC
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献