Author:
Ezhov Matvey,Gusarev Maxim,Golitsyna Maria,Yates Julian M.,Kushnerev Evgeny,Tamimi Dania,Aksoy Secil,Shumilov Eugene,Sanders Alex,Orhan Kaan
Abstract
AbstractIn this study, a novel AI system based on deep learning methods was evaluated to determine its real-time performance of CBCT imaging diagnosis of anatomical landmarks, pathologies, clinical effectiveness, and safety when used by dentists in a clinical setting. The system consists of 5 modules: ROI-localization-module (segmentation of teeth and jaws), tooth-localization and numeration-module, periodontitis-module, caries-localization-module, and periapical-lesion-localization-module. These modules use CNN based on state-of-the-art architectures. In total, 1346 CBCT scans were used to train the modules. After annotation and model development, the AI system was tested for diagnostic capabilities of the Diagnocat AI system. 24 dentists participated in the clinical evaluation of the system. 30 CBCT scans were examined by two groups of dentists, where one group was aided by Diagnocat and the other was unaided. The results for the overall sensitivity and specificity for aided and unaided groups were calculated as an aggregate of all conditions. The sensitivity values for aided and unaided groups were 0.8537 and 0.7672 while specificity was 0.9672 and 0.9616 respectively. There was a statistically significant difference between the groups (p = 0.032). This study showed that the proposed AI system significantly improved the diagnostic capabilities of dentists.
Publisher
Springer Science and Business Media LLC
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献