Tuning the Schottky barrier height in single- and bi-layer graphene-inserted MoS2/metal contacts

Author:

Zhao Xumei,Xia Caijuan,Li Lianbi,Wang Anxiang,Cao Dezhong,Zhang Baiyu,Fang Qinglong

Abstract

AbstractFirst-principle calculations based on density functional theory are employed to investigate the impact of graphene insertion on the electronic properties and Schottky barrier of MoS2/metals (Mg, Al, In, Cu, Ag, Au, Pd, Ti, and Sc) without deteriorating the intrinsic properties of the MoS2 layer. The results reveal that the charge transfer mainly occurs at the interface between the graphene and metal layers, with smaller transfer at the interface between bi-layer garphene or between graphene and MoS2. And the tunneling barrier exists at the interface between graphene and MoS2, which hinders electron injection from graphene to MoS2. Importantly, the Schottky barrier height ($$\Phi_{{\text{SB,N}}}$$ Φ SB,N ) decreases upon graphene insertion into MoS2/metal contacts. Specifically, for single-layer graphene, the $$\Phi_{{\text{SB,N}}}$$ Φ SB,N of MoS2 contacted with Mg, In, Sc, and Ti are − 0.116 eV, − 0.116 eV, − 0.014 eV, and − 0.116 eV, respectively. Furthermore, with bilayer graphene, when by inserting bi-layer graphene, the negative n-type Schottky barrier of − 0.086 eV, − 0.114 eV, − 0.059 eV, − 0.008 eV, and − 0.0636 eV are observed for MoS2 contacted with the respective metals, respectively. These findings provide a practical guidance for developing and designing high-performance transition metal dichalcogenide nanoelectronic devices.

Funder

Doctoral Program of Xi'an Polytechnic University

Scientific Research Program Funded by Shaanxi Provincial Education Department

National Key Laboratory of Plasma Physics

Key Research and Development Program of Shaanxi Province

Shaanxi Fundamental Science Research Project for Mathematics and Physics

Fundamental Research Funds of Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices

Science and Technology Plan Project of Xi'an

Natural Science Foundation of Shaanxi Province

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3