Metal-matrix nanocomposites under compressive loading: Towards an understanding of how twinning formation can enhance their plastic deformation

Author:

Kardani A.,Montazeri A.

Abstract

AbstractRecently, Cu-Ag nanocomposites (NCs) have been extensively used as medical implants and surgical instruments due to their antibacterial properties. Consequently, mechanical behavior analysis of these NCs is of crucial importance with emphasis on their plastic deformation mechanisms. From the materials science perspective, dislocations slip at the room temperature and high strain rates conditions is hindered. However, copper and silver, as two metals with low stacking fault energy are prone to twin formation. Since microstructural changes in these nanostructured composites occur at the atomic scale, molecular dynamics (MD) simulation is undoubtedly a great tool to use. Accordingly, in the present research, first, the deformation mechanism of perfect copper-silver NCs under uniaxial compression is deeply analyzed employing MD. This is followed by inspection of the voids effect on their plastic deformation process. The results show that twinning is the dominant mechanism governing their deformation under uniaxial compressive loading conditions. It is revealed that twins are created by the conversion of internal stacking faults to their external counterparts. Also, investigation of the microstructural evolution demonstrates that the presence of voids within NC samples provides new sites for nucleation of Shockley dislocations in addition to the interface zone. Finally, to address the effect of interfacial coherency on the results, copper-based NCs infused with gold and nickel nanoparticles are also thoroughly examined.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3