Computational Analysis of the Mechanical Properties of Ta/Cu Nanocomposite Dental Implants: On the Role of Incoherent Interfaces

Author:

Kardani Arash,Montazeri Abbas,Urbassek Herbert M.ORCID

Abstract

AbstractIn recent years, tantalum (Ta)-based nanostructured dental implants have been widely utilized considering their exceptional biocompatibility, bioactivity, and biomechanical properties. Despite their advantages, the mechanical properties of Ta are higher than those of the adjacent jawbone, weakening the bone structure. It has been demonstrated that soft antibacterial additives such as copper (Cu) nanoparticles can tune the mechanical features of Ta-based implants to be similar to those of the adjacent bone. However, a noticeable gap in this research area is the lack of a computational model to explore the interfacial load transfer through the curved interfaces of Ta/Cu nanocomposites. Accordingly, a series of molecular dynamics simulations is employed to survey the microstructural evolution in Ta/Cu nanocomposites subjected to the uniaxial tensile loading condition at the body temperature. Additionally, to provide a complete picture of the contribution of Cu nanoparticles to the results, the mechanisms governing the plastic deformation of nanocomposite models with fine-grained and coarse-grained Ta matrix is systematically examined during the process. In summary, this work provides a comprehensive molecular dynamics simulation of the role of dislocation networks, twin formation, and their mutual interactions on the extent of the plastic zone in various Ta/Cu nanocomposite models. Graphical Abstract

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Kaiserslautern

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3