The hemodynamic complexities underlying transient ischemic attacks in early-stage Moyamoya disease: an exploratory CFD study

Author:

Rashad SherifORCID,Saqr Khalid M.ORCID,Fujimura Miki,Niizuma KuniyasuORCID,Tominaga Teiji

Abstract

AbstractMoyamoya disease (MMD) is a rare cerebro-occlusive disease with unknown etiology that can cause both ischemic and hemorrhagic stroke. MMD is characterized by progressive stenosis of the terminal internal carotid artery (ICA) and development of basal brain collaterals. Early-stage MMD is known to cause hemodynamic insufficiency despite mild or moderate stenosis of the intracranial arteries, but the exact mechanism underlying this pathophysiological condition is undetermined. We used high-resolution Large Eddy Simulations to investigate multiple complex hemodynamic phenomena that led to cerebral ischemia in five patients with early-stage MMD. The effects of transitional flow, coherent flow structures and blood shear-thinning properties through regions of tortuous and stenosed arteries were explored and linked to symptomatology. It is evidently shown that in some cases complex vortex structures, such as Rankine-type vortices, redirects blood flow away from some arteries causing significant reduction in blood flow. Moreover, partial blood hammer (PBH) phenomenon was detected in some cases and led to significant hemodynamic insufficiency. PBH events were attributed to the interaction between shear-thinning properties, transitional flow structures and loss of upstream pressure-velocity phase lag. We clearly show that the hemodynamic complexities in early-stage MMD could induce ischemia and explain the non-responsiveness to antiplatelet therapy.

Funder

MEXT | Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3