Production of neutralizing antibody fragment variants in the cytoplasm of E. coli for rapid screening: SARS-CoV-2 a case study

Author:

Tungekar Aatir A.ORCID,Recacha RosarioORCID,Ruddock Lloyd W.ORCID

Abstract

AbstractGlobal health challenges such as the coronavirus pandemic warrant the urgent need for a system that allows efficient production of diagnostic and therapeutic interventions. Antibody treatments against SARS-CoV-2 were developed with an unprecedented pace and this enormous progress was achieved mainly through recombinant protein production technologies combined with expeditious screening approaches. A heterologous protein production system that allows efficient soluble production of therapeutic antibody candidates against rapidly evolving variants of deadly pathogens is an important step in preparedness towards future pandemic challenges. Here, we report cost and time-effective soluble production of SARS-CoV-2 receptor binding domain (RBD) variants as well as an array of neutralizing antibody fragments (Fabs) based on Casirivimab and Imdevimab using the CyDisCo system in the cytoplasm of E. coli. We also report variants of the two Fabs with higher binding affinity against SARS-CoV-2 RBD and suggest this cytoplasmic production of disulfide containing antigens and antibodies can be broadly applied towards addressing future global public health threats.

Funder

H2020 Marie Skłodowska-Curie Actions

Academy of Finland

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3