Design of an alternate antibody fragment format that can be produced in the cytoplasm of Escherichia coli

Author:

Tungekar Aatir A.ORCID,Ruddock Lloyd W.ORCID

Abstract

AbstractWith increased accessibility and tissue penetration, smaller antibody formats such as antibody fragments (Fab) and single chain variable fragments (scFv) show potential as effective and low-cost choices to full-length antibodies. These formats derived from the modular architecture of antibodies could prove to be game changers for certain therapeutic and diagnostic applications. Microbial hosts have shown tremendous promise as production hosts for antibody fragment formats. However, low target protein yields coupled with the complexity of protein folding result in production limitations. Here, we report an alternative antibody fragment format ‘FabH3’ designed to overcome some key bottlenecks associated with the folding and production of Fabs. The FabH3 molecule is based on the Fab format with the constant domains replaced by engineered immunoglobulin G1 (IgG1) CH3 domains capable of heterodimerization based on the electrostatic steering approach. We show that this alternative antibody fragment format can be efficiently produced in the cytoplasm of E. coli using the catalyzed disulfide-bond formation system (CyDisCo) in a natively folded state with higher soluble yields than its Fab counterpart and a comparable binding affinity against the target antigen.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3