A comparison of time to event analysis methods, using weight status and breast cancer as a case study

Author:

Aivaliotis Georgios,Palczewski Jan,Atkinson Rebecca,Cade Janet E.,Morris Michelle A.

Abstract

AbstractSurvival analysis with cohort study data has been traditionally performed using Cox proportional hazards models. Random survival forests (RSFs), a machine learning method, now present an alternative method. Using the UK Women’s Cohort Study (n = 34,493) we evaluate two methods: a Cox model and an RSF, to investigate the association between Body Mass Index and time to breast cancer incidence. Robustness of the models were assessed by cross validation and bootstraping. Histograms of bootstrap coefficients are reported. C-Indices and Integrated Brier Scores are reported for all models. In post-menopausal women, the Cox model Hazard Ratios (HR) for Overweight (OW) and Obese (O) were 1.25 (1.04, 1.51) and 1.28 (0.98, 1.68) respectively and the RSF Odds Ratios (OR) with partial dependence on menopause for OW and O were 1.34 (1.31, 1.70) and 1.45 (1.42, 1.48). HR are non-significant results. Only the RSF appears confident about the effect of weight status on time to event. Bootstrapping demonstrated Cox model coefficients can vary significantly, weakening interpretation potential. An RSF was used to produce partial dependence plots (PDPs) showing OW and O weight status increase the probability of breast cancer incidence in post-menopausal women. All models have relatively low C-Index and high Integrated Brier Score. The RSF overfits the data. In our study, RSF can identify complex non-proportional hazard type patterns in the data, and allow more complicated relationships to be investigated using PDPs, but it overfits limiting extrapolation of results to new instances. Moreover, it is less easily interpreted than Cox models. The value of survival analysis remains paramount and therefore machine learning techniques like RSF should be considered as another method for analysis.

Funder

Engineering and Physical Sciences Research Council

Economic and Social Research Council

Medicial Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3