Author:
Guindalini Rodrigo Santa Cruz,Viana Danilo Vilela,Kitajima João Paulo Fumio Whitaker,Rocha Vinícius Marques,López Rossana Verónica Mendoza,Zheng Yonglan,Freitas Érika,Monteiro Fabiola Paoli Mendes,Valim André,Schlesinger David,Kok Fernando,Olopade Olufunmilayo I.,Folgueira Maria Aparecida Azevedo Koike
Abstract
AbstractGenetic diversity of germline variants in breast cancer (BC) predisposition genes is unexplored in miscegenated populations, such those living in Latin America. We evaluated 1663 Brazilian BC patients, who underwent hereditary multigene panel testing (20–38 cancer susceptibility genes), to determine the spectrum and prevalence of pathogenic/likely pathogenic (P/LP) variants and variants of uncertain significance (VUS). Associations between P/LP variants and BC risk were estimated in a case–control analysis of BC patients and 18,919 Brazilian reference controls (RC). In total, 335 (20.1%) participants carried germline P/LP variants: 167 (10.0%) in BRCA1/2, 122 (7.3%) in BC actionable non-BRCA genes and 47 (2.8%) in candidate genes or other cancer predisposition genes. Overall, 354 distinctive P/LP variants were identified in 23 genes. The most commonly mutated genes were: BRCA1 (27.4%), BRCA2 (20.3%), TP53 (10.5%), monoallelic MUTYH (9.9%), ATM (8.8%), CHEK2 (6.2%) and PALB2 (5.1%). The Brazilian variant TP53 R337H (c.1010G>A, p.Arg337His), detected in 1.6% of BC patients and 0.1% of RC, was strongly associated with risk of BC, OR = 17.4 (95% CI: 9.4–32.1; p < 0.0001); monoallelic MUTYH variants c.1187G>A and c.536A>G, detected in 1.2% (0.9% RC) and 0.8% (0.4% RC) of the patients, respectively, were not associated with the odds of BC, the former with OR = 1.4 (95% CI: 0.8–2.4; p = 0.29) and the latter with OR = 1.9 (95% CI: 0.9–3.9; p = 0.09). The overall VUS rate was 46.1% for the entire patient population. Concluding, the use of multigene panel testing almost doubled the identification of germline P/LP variants in clinically actionable predisposition genes in BC patients. In Brazil, special attention should be given to TP53 P/LP variants.
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Ministério da Saúde. Instituto Nacional de Câncer José Alencar Gomes da Silva. Estimativa 2020: Incidência de câncer no Brasil. https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-2020-incidencia-de-cancer-no-brasil.pdf (2019).
2. Rebbeck, T. R. et al. Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Hum. Mutat. 39, 593–620 (2018).
3. Kurian, A. W. et al. Breast and ovarian cancer penetrance estimates derived from germline multiple-gene sequencing results in women. JCO Precis. Oncol. 1, 1–12 (2017).
4. Nielsen, F. C., van Overeem Hansen, T. & Sørensen, C. S. Hereditary breast and ovarian cancer: New genes in confined pathways. Nat. Rev. Cancer. 16, 599–612 (2016).
5. Michailidou, K. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat. Genet. 45, 353–361 (2013).
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献