Abstract
Abstract
Near-infrared sensitization of monolayer MoS2 is here achieved via the covalent attachment of a novel heteroleptic nickel bis-dithiolene complex into sulfur vacancies in the MoS2 structure. Photocurrent action spectroscopy of the sensitized films reveals a discreet contribution from the sensitizer dye centred around 1300 nm (0.95 eV), well below the bandgap of MoS2 (2.1 eV), corresponding to the excitation of the monoanionic dithiolene complex. A mechanism of conductivity enhancement is proposed based on a photo-induced flattening of the corrugated energy landscape present at sulfur vacancy defect sites within the MoS2 due to a dipole change within the dye molecule upon photoexcitation. This method of sensitization might be readily extended to other functional molecules that can impart a change to the dielectric environment at the MoS2 surface under stimulation, thereby extending the breadth of detector applications for MoS2 and other transition metal dichalcogenides.
Funder
Deutsche Forschungsgemeinschaft
MEXT | JST | Accelerated Innovation Research Initiative Turning Top Science and Ideas into High-Impact Values
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献