Online recognition and yield estimation of tomato in plant factory based on YOLOv3

Author:

Wang Xinfa,Vladislav Zubko,Viktor Onychko,Wu Zhenwei,Zhao Mingfu

Abstract

AbstractIn order to realize the intelligent online yield estimation of tomato in the plant factory with artificial lighting (PFAL), a recognition method of tomato red fruit and green fruit based on improved yolov3 deep learning model was proposed to count and estimate tomato fruit yield under natural growth state. According to the planting environment and facility conditions of tomato plants, a computer vision system for fruit counting and yield estimation was designed and the new position loss function was based on the generalized intersection over union (GIoU), which improved the traditional YOLO algorithm loss function. Meanwhile, the scale invariant feature could promote the description precision of the different shapes of fruits. Based on the construction and labeling of the sample image data, the K-means clustering algorithm was used to obtain nine prior boxes of different specifications which were assigned according to the hierarchical level of the feature map. The experimental results of model training and evaluation showed that the mean average precision (mAP) of the improved detection model reached 99.3%, which was 2.7% higher than that of the traditional YOLOv3 model, and the processing time for a single image declined to 15 ms. Moreover, the improved YOLOv3 model had better identification effects for dense and shaded fruits. The research results can provide yield estimation methods and technical support for the research and development of intelligent control system for planting fruits and vegetables in plant factories, greenhouses and fields.

Funder

Science and Technology Department of Henan Province

Education Department of Henan Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3