Author:
Kozhar Olga,Sitz Rachael A.,Woyda Reed,Legg Lillian,Ibarra Caballero Jorge R.,Pearse Ian S.,Abdo Zaid,Stewart Jane E.
Abstract
AbstractUnderstanding processes leading to disease emergence is important for effective disease management and prevention of future epidemics. Utilizing whole genome sequencing, we studied the phylogenetic relationship and diversity of two populations of the bacterial oak pathogen Lonsdalea quercina from western North America (Colorado and California) and compared these populations to other Lonsdalea species found worldwide. Phylogenetic analysis separated Colorado and California populations into two Lonsdalea clades, with genetic divergence near species boundaries, suggesting long isolation and populations that differ in genetic structure and distribution and possibly their polyphyletic origin. Genotypes collected from different host species and habitats were randomly distributed within the California cluster. Most Colorado isolates from introduced planted trees, however, were distinct from three isolates collected from a natural stand of Colorado native Quercus gambelii, indicating cryptic population structure. The California identical core genotypes distribution varied, while Colorado identical core genotypes were always collected from neighboring trees. Despite its recent emergence, the Colorado population had higher nucleotide diversity, possibly due to its long presence in Colorado or due to migrants moving with nursery stock. Overall, results suggest independent pathogen emergence in two states likely driven by changes in host-microbe interactions due to ecosystems changes. Further studies are warranted to understand evolutionary relationships among L. quercina from different areas, including the red oak native habitat in northeastern USA.
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Ghelardini, L., Pepori, A. L., Luchi, N., Capretti, P. & Santini, A. Drivers of emerging fungal diseases of forest trees. For. Ecol. Manag. 381, 235–246 (2016).
2. Koskella, B., Meaden, S., Crowther, W. J., Leimu, R. & Metcalf, C. J. E. A signature of tree health? Shifts in the microbiome and the ecological drivers of horse chestnut bleeding canker disease. New Phytol. 215, 737–746 (2017).
3. Adams, A. S. et al. Mountain pine beetles colonizing historical and naïve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl. Environ. Microbiol. 79, 3468–3475 (2013).
4. Denman, S. et al. Microbiome and infectivity studies reveal complex polyspecies tree disease in Acute Oak Decline. ISME J 12, 386–399 (2018).
5. Nixon, K. C. The oak (Quercus) biodiversity of California and adjacent regions. In: Standiford, Richard B., et al, tech. editor. Proceedings of the Fifth Symposium on Oak Woodlands: Oaks in California’s Challenging Landscape. Gen. Tech. Rep. PSW-GTR-184, Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture: 3–20 184 (2002).