Siloxane-functionalised surface patterns as templates for the ordered deposition of thin lamellar objects

Author:

Hoffmann JulianORCID,Gamboa Sofia MadrigalORCID,Hofmann AndreasORCID,Gliemann Hartmut,Welle Alexander,Wacker Irene,Schröder Rasmus R.,Ness Len,Hagenmeyer Veit,Gengenbach Ulrich

Abstract

AbstractA novel method is demonstrated for ordered deposition of thin lamellar objects from a liquid environment onto solid substrates by solid/fluid/solid-driven organisation. Surface functionalisation forms a template pattern that accumulates the lamellar objects by site-selective wetting of the target area without the need for a physical fluid containment. Contrary to conventional handling methods, no mechanical contact occurs, which facilitates the ordered deposition without wrinkles or ruptures. An additive and a subtractive process for the creation of such templates are presented. The subtractive process starts with the complete silanisation of the substrate in the vapour phase followed by site-selective oxygen plasma treatment of the siloxane film. The additive process uses microcontact printing to transfer the target pattern. Both processes are characterised by optical inspection of the wetting contours and it is found that site-selective plasma treatment shows a better pattern fidelity. The patterns obtained by site-selective plasma treatment are also subject to ToF-SIMS analysis and show good chemical contrast between hydrophilic and hydrophobic areas. The ordered deposition of lamellar objects by this new method is demonstrated for 60 nm thick ultramicrotome sections of epoxide resin on pre-patterned glass substrates.

Funder

Karlsruher Institut für Technologie

Science and Technology of Nanosystems in the Research Field Key Technologies of the Helmholtz Association

Helmholtz Association

Bundesministerium für Bildung und Forschung

Employed at RMC Boeckeler

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3