Temporal evolution of mechanical stimuli from vascular remodeling in response to the severity and duration of aortic coarctation in a preclinical model

Author:

Azarnoosh Jamasp,Ghorbannia Arash,Ibrahim El-Sayed H.,Jurkiewicz Hilda,Kalvin Lindsey,LaDisa John F.

Abstract

AbstractCoarctation of the aorta (CoA) is one of the most common congenital cardiovascular diseases. CoA patients frequently undergo surgical repair, but hypertension (HTN) is still common. The current treatment guideline has revealed irreversible changes in structure and function, yet revised severity guidelines have not been proposed. Our objective was to quantify temporal alterations in mechanical stimuli and changes in arterial geometry in response to the range of CoA severities and durations (i.e. age of treatment) seen clinically. Rabbits were exposed to CoA resulting in peak-to-peak blood pressure gradient (BPGpp) severities of ≤ 10, 10–20, and ≥ 20 mmHg for a duration of ~ 1, 3, or 20 weeks using permanent, dissolvable, and rapidly dissolvable sutures. Elastic moduli and thickness were estimated from imaging and longitudinal fluid–structure interaction (FSI) simulations were conducted at different ages using geometries and boundary conditions from experimentally measured data. Mechanical stimuli were characterized including blood flow velocity patterns, wall tension, and radial strain. Experimental results show vascular alternations including thickening and stiffening proximal to the coarctation with increasing severity and/or duration of CoA. FSI simulations indicate wall tension in the proximal region increases markedly with coarctation severity. Importantly, even mild CoA induced stimuli for remodeling that exceeds values seen in adulthood if not treated early and using a BPGpp lower than the current clinical threshold. The findings are aligned with observations from other species and provide some guidance for the values of mechanical stimuli that could be used to predict the likelihood of HTN in human patients with CoA.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3