Quantifying microstructures of earth materials using higher-order spatial correlations and deep generative adversarial networks

Author:

Amiri Hamed,Vasconcelos Ivan,Jiao Yang,Chen Pei-En,Plümper Oliver

Abstract

AbstractThe key to most subsurface processes is to determine how structural and topological features at small length scales, i.e., the microstructure, control the effective and macroscopic properties of earth materials. Recent progress in imaging technology has enabled us to visualise and characterise microstructures at different length scales and dimensions. However, one limitation of these technologies is the trade-off between resolution and sample size (or representativeness). A promising approach to this problem is image reconstruction which aims to generate statistically equivalent microstructures but at a larger scale and/or additional dimension. In this work, a stochastic method and three generative adversarial networks (GANs), namely deep convolutional GAN (DCGAN), Wasserstein GAN with gradient penalty (WGAN-GP), and StyleGAN2 with adaptive discriminator augmentation (ADA), are used to reconstruct two-dimensional images of two hydrothermally rocks with varying degrees of complexity. For the first time, we evaluate and compare the performance of these methods using multi-point spatial correlation functions—known as statistical microstructural descriptors (SMDs)—ultimately used as external tools to the loss functions. Our findings suggest that a well-trained GAN can reconstruct higher-order, spatially-correlated patterns of complex earth materials, capturing underlying structural and morphological properties. Comparing our results with a stochastic reconstruction method based on a two-point correlation function, we show the importance of coupling training/assessment of GANs with higher-order SMDs, especially in the case of complex microstructures. More importantly, by quantifying original and reconstructed microstructures via different GANs, we highlight the interpretability of these SMDs and show how they can provide valuable insights into the spatial patterns in the synthetic images, allowing us to detect common artefacts and failure cases in training GANs.

Funder

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3