Abstract
AbstractThe prediction of material properties from a given microstructure and its reverse engineering displays an essential ingredient for accelerated material design. However, a comprehensive methodology to uncover the processing-structure-property relationship is still lacking. Herein, we develop a methodology capable of understanding this relationship for differently processed porous materials. We utilize a multi-method machine learning approach incorporating tomographic image data acquisition, segmentation, microstructure feature extraction, feature importance analysis and synthetic microstructure reconstruction. Enhanced segmentation with an accuracy of about 95% based on an efficient annotation technique provides the basis for accurate microstructure quantification, prediction and understanding of the correlation of the extracted microstructure features and electrical conductivity. We show that a diffusion probabilistic model superior to a generative adversarial network model, provides synthetic microstructure images including physical information in agreement with real data, an essential step to predicting properties of unseen conditions.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献