Author:
Wang Bo,Shahzad Muhammad,Zhu Xianglin,Ur Rehman Khalil,Ashfaq Muhammad,Abubakar Muhammad
Abstract
AbstractThe l-lysine fermentation process is a complex, nonlinear, dynamic biochemical reaction process with multiple inputs and multiple outputs. There is a complex nonlinear dynamic relationship between each state variable. Some key variables in the fermentation process that directly reflect the quality of the fermentation cannot be measured online in real-time which greatly limits the application of advanced control technology in biochemical processes. This work introduces a hybrid ICS-MLSSVM soft-sensor modeling method to realize the online detection of key biochemical variables (cell concentration, substrate concentration, product concentration) of the l-lysine fermentation process. First of all, a multi-output least squares support vector machine regressor (MLSSVM) model is constructed based on the multi-input and multi-output characteristics of l-lysine fermentation process. Then, important parameters ($$\gamma$$γ, $$\lambda$$λ, $$\sigma$$σ) of MLSSVM model are optimized by using the Improved Cuckoo Search (ICS) optimization algorithm. In the end, the hybrid ICS-MLSSVM soft-sensor model is developed by using optimized model parameter values, and the key biochemical variables of the l-lysine fermentation process are realized online. The simulation results confirm that the proposed regression model can accurately predict the key biochemical variables. Furthermore, the hybrid ICS-MLSSVM soft-sensor model is better than the MLSSVM soft-sensor model based on standard CS (CS-MLSSVM), particle swarm optimization (PSO) algorithm (PSO-MLSSVM) and genetic algorithm (GA-MLSSVM) in prediction accuracy and adaptability.
Funder
National Science Research Foundation of CHINA
Natural Science Foundation of Jiangsu Province
A project funded by the priority academic program development of Jiangsu higher education institution
R and D on soft-sensing and control of key parameters for microbial fermentation
Publisher
Springer Science and Business Media LLC
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献