Interactive Studies on Synthetic Nanopolymer decorated with Edible Biopolymer and its Selective Electrochemical determination of L-Tyrosine

Author:

Dhananjayan Nathiya,Jeyaraj Wilson,Karuppasamy Gurunathan

Abstract

Abstract Herein, an edible biopolymer amine Modified Gum Acacia (MGA), successfully encumbered with Electron Beam irradiated Polypyrrole Nanospheres (EB-PPy NSs), was investigated for the effective role in L-Tyrosine (Tyr) biosensing application. The morphology of EB-PPy NSs decorated MGA (EB-PPy/MGA) hybrid nanobiocomposite has been studied by Scanning electron microscopy and its affirmed interactions were characterized by X-ray diffraction, Raman, FT-IR spectroscopy, UV-Visible spectroscopy, Thermo Gravimetric Analysis and Vibrating Sample Magnetometer. The hybrid nanobiocomposite manifested diamagnetic behavior with reduced saturation magnetization (Ms = 1.412 × 10−4 emu/g) to produce more adhesive surface. Amine chains in EB-PPy NSs and hydroxyl groups of MGA contributed to effective immobilization, thus enabling suitable orientation for Tyr determination. The electrochemical analysis illustrated that the proposed nanobiocomposite based sensor exhibited an excellent electrocatalytic activity toward selective determination of Tyr in the linear range of 0.4 to 600 µM with a lower detection limit of 85 nM, low oxidation potential of 0.72 V and good selectivity. Finally, the reliability of the constructed EB-PPy/MGA for Tyr detection was demonstrated in real samples.

Funder

DST | Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3