An order independent algorithm for inferring gene regulatory network using quantile value for conditional independence tests

Author:

Mahmoodi Sayyed Hadi,Aghdam Rosa,Eslahchi Changiz

Abstract

AbstractIn recent years, due to the difficulty and inefficiency of experimental methods, numerous computational methods have been introduced for inferring the structure of Gene Regulatory Networks (GRNs). The Path Consistency (PC) algorithm is one of the popular methods to infer the structure of GRNs. However, this group of methods still has limitations and there is a potential for improvements in this field. For example, the PC-based algorithms are still sensitive to the ordering of nodes i.e. different node orders results in different network structures. The second is that the networks inferred by these methods are highly dependent on the threshold used for independence testing. Also, it is still a challenge to select the set of conditional genes in an optimal way, which affects the performance and computation complexity of the PC-based algorithm. We introduce a novel algorithm, namely Order Independent PC-based algorithm using Quantile value (OIPCQ), which improves the accuracy of the learning process of GRNs and solves the order dependency issue. The quantile-based thresholds are considered for different orders of CMI tests. For conditional gene selection, we consider the paths between genes with length equal or greater than 2 while other well-known PC-based methods only consider the paths of length 2. We applied OIPCQ on the various networks of the DREAM3 and DREAM4 in silico challenges. As a real-world case study, we used OIPCQ to reconstruct SOS DNA network obtained from Escherichia coli and GRN for acute myeloid leukemia based on the RNA sequencing data from The Cancer Genome Atlas. The results show that OIPCQ produces the same network structure for all the permutations of the genes and improves the resulted GRN through accurately quantifying the causal regulation strength in comparison with other well-known PC-based methods. According to the GRN constructed by OIPCQ, for acute myeloid leukemia, two regulators BCLAF1 and NRSF reported previously are significantly important. However, the highest degree nodes in this GRN are ZBTB7A and PU1 which play a significant role in cancer, especially in leukemia. OIPCQ is freely accessible at https://github.com/haammim/OIPCQ-and-OIPCQ2.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3