Reverse network diffusion to remove indirect noise for better inference of gene regulatory networks

Author:

Yu Jiating123,Leng Jiacheng234ORCID,Yuan Fan23,Sun Duanchen5ORCID,Wu Ling-Yun23ORCID

Affiliation:

1. School of Mathematics and Statistics, Nanjing University of Information Science & Technology , Nanjing 210044, China

2. IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences , Beijing 100190, China

3. School of Mathematical Sciences, University of Chinese Academy of Sciences , Beijing 100049, China

4. Zhejiang Lab , Hangzhou 311121, China

5. School of Mathematics, Shandong University , Jinan 250100, China

Abstract

Abstract Motivation Gene regulatory networks (GRNs) are vital tools for delineating regulatory relationships between transcription factors and their target genes. The boom in computational biology and various biotechnologies has made inferring GRNs from multi-omics data a hot topic. However, when networks are constructed from gene expression data, they often suffer from false-positive problem due to the transitive effects of correlation. The presence of spurious noise edges obscures the real gene interactions, which makes downstream analyses, such as detecting gene function modules and predicting disease-related genes, difficult and inefficient. Therefore, there is an urgent and compelling need to develop network denoising methods to improve the accuracy of GRN inference. Results In this study, we proposed a novel network denoising method named REverse Network Diffusion On Random walks (RENDOR). RENDOR is designed to enhance the accuracy of GRNs afflicted by indirect effects. RENDOR takes noisy networks as input, models higher-order indirect interactions between genes by transitive closure, eliminates false-positive effects using the inverse network diffusion method, and produces refined networks as output. We conducted a comparative assessment of GRN inference accuracy before and after denoising on simulated networks and real GRNs. Our results emphasized that the network derived from RENDOR more accurately and effectively captures gene interactions. This study demonstrates the significance of removing network indirect noise and highlights the effectiveness of the proposed method in enhancing the signal-to-noise ratio of noisy networks. Availability and implementation The R package RENDOR is provided at https://github.com/Wu-Lab/RENDOR and other source code and data are available at https://github.com/Wu-Lab/RENDOR-reproduce

Funder

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3