Inclusion of bimetallic Fe0.75Cu0.25-BDC MOFs into Alginate-MoO3/GO as a novel nanohybrid for adsorptive removal of hexavalent chromium from water

Author:

Mahmoud Mohamed E.,Amira Mohamed F.,Azab Mayar M. H. M.,Abdelfattah Amir M.

Abstract

AbstractMetal–organic frameworks (MOFs) as porous materials have recently attracted research works in removal of toxic pollutants from water. Cr(VI) is well-known as one of the most toxic forms of chromium and the selection of efficient and effective Cr(VI)-remediation technology must be focused on a number of important parameters. Therefore, the objective of this work is to fabricate a novel nanohybrid adsorbent for removal of Cr(VI) by using assembled bimetallic MOFs (Fe0.75Cu0.25-BDC)-bound- Alginate-MoO3/Graphene oxide (Alg-MoO3/GO) via simple solvothermal process. The aimed Fe0.75Cu0.25-BDC@Alg-MoO3/GO nanohybrid was confirmed by FTIR, SEM, TEM, XRD and TGA. Adsorptive extraction of Cr(VI) from aqueous solution was aimed by various optimized experimental parameters providing optimum pH = 3, dosage = 5–10 mg, starting concentration of Cr(VI) = 5–15 mg L−1, shaking time = 5–10 min. The point of zero charge (pHPzc) was 3.8. For Cr(VI) removal by Fe0.75Cu0.25-BDC@Alg-MoO3/GO, four isotherm models were estimated: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) with calculated correlation coefficient (R2 = 0.9934) for Langmuir model which was higher than others. The collected results from the kinetic study clarified that pseudo-second order model is the most convenient one for describing the adsorption behavior of Cr(VI) and therefore, the adsorption process was suggested to rely on a chemisorption mechanism. Thermodynamic parameters referred that the adsorption mechanism is based on a spontaneous and exothermic process. Finally, the emerged Fe0.75Cu0.25-BDC@Alg-MoO3/GO nanohybrid was confirmed as an effective adsorbent for extraction of hexavalent chromium from real water specimens (tap, sea water and wastewater) with percentage recovery values > 98%.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3