Synthesis of innovative and sustainable gelatin@graphene oxide-crosslinked-zirconium silicate@gelatin nanobiosorbent for effective biosorption of basic fuchsin dye

Author:

Mahmoud Mohamed E.,Nabil Gehan M.,Elsayed Sarah M.,Rashad Amal R.

Abstract

AbstractMost dye stuffs and coloring materials are mainly categorized as hazardous pollutants in water effluents due to their nature as non-biodegradable, highly toxic and extremely carcinogenic. For this reason, rapid and efficient eradication of waste dyes from wastewaters before discharging into water streams must be accomplished by an acceptable approach as adsorption technique. Therefore, the present study is aimed and devoted to synthesize a novel nanobiosorbent from three different constituents, gelatin (Gel) as a sustainable natural product, graphene oxide (GO) as an example of highly stable carbonaceous material and zirconium silicate (ZrSiO4) as an example of combined metal oxides for the formation of Gel@GO-F-ZrSiO4@Gel by using formaldehyde (F) as a cross-linkage reagent. Several characterization techniques as FT-IR were employed to identify the incorporated surface reactive Functionalities in Gel@GO-F-ZrSiO4@Gel as –OH, =NH, –NH2, –COOH and C=O, etc. The morphology for particle shape and size of Gel@GO-F-ZrSiO4@Gel were confirmed from the SEM and TEM analyses providing 15.75- 32.79 nm. The surface area was determined by the BET and found to correspond to 219.46 m2 g-1. Biosorptive removal of basic fuchsin (BF) pollutant as an example of a widely applicable dye in various activities was monitored and optimized under the influence of pH (2–10), reaction time (1–30 min), initial BF pollutant concentration (5–100 mg L−1), nanobiosorbent dosage (5–60 mg), temperature (30–60 °C) and interfering ions. The maximum biosorptive removal values of BF dye were established as 96.0 and 95.2% using 5 and 10 mg L−1, respectively at the recommended pH 7 condition. The Thermodynamic parameters demonstrated that the BF dye adsorption onto Gel@GO-F-ZrSiO4@Gel was taken place via spontaneous and endothermic reaction. Chemisorption is the predominant adsorption mechanism by forming multilayers upon nonhomogeneous surface in accordance with Freundlich model hypothesis. The applicability of the optimized Gel@GO-F-ZrSiO4@Gel in biosorptive removal of BF pollutant from real water sample was successfully accomplished by the batch technique. Thus, this study clearly shows that Gel@GO-F-ZrSiO4@Gel exhibited significant influences on remediation of industrial effluents containing BF pollutant with superior efficiency.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3