Decoding the physiological response of plants to stress using deep learning for forecasting crop loss due to abiotic, biotic, and climatic variables

Author:

Kumar Mridul,Saifi Zeeshan,Krishnananda Soami Daya

Abstract

AbstractThis paper presents a simple method for detecting both biotic and abiotic stress in plants. Stress levels are measured based on the increase in nutrient uptake by plants as a mechanism of self-defense when under stress. A continuous electrical resistance measurement was used to estimate the rate of change of nutrients in agarose as the growth medium for Cicer arietinum (Chickpea) seeds. To determine the concentration of charge carriers in the growth medium, Drude’s model was used. For identifying anomalies and forecasting plant stress, two experiments were conducted and outliers were found in electrical resistance and relative changes in carrier concentration. Anomaly in the first iteration was detected by applying k-Nearest Neighbour, One Class Support Vector Machine and Local Outlier Factor in unsupervised mode on electrical resistance data. In the second iteration, the neural network-based Long Short Term Memory method was used on the relative change in the carrier concentration data. As a result of the change in resistance of growth media during stress, nutrient concentrations shifted by 35%, as previously reported. Farmers who cater to small communities around them and are most affected by local and global stress factors can use this method of forecasting.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3