Abstract
AbstractConsidering looming fatality and economic recession, effective policy making based on ongoing COVID-19 pandemic is an urgent and standing issue. Numerous issues for controlling infection have arisen from public discussion led by medical professionals. Yet understanding of these factors has been necessarily qualitative and control measures to correct unfavorable trends specific to an infection area have been lacking. The logical implement for control is a large scale stochastic model with countless parameters lacking robustness and requiring enormous data. This paper presents a remedy for this vexing problem by proposing an alternative approach. Machine learning has come to play a widely circulated role in the study of complex data in recent times. We demonstrate that when machine learning is employed together with the mechanistic framework of a mathematical model, there can be a considerably enhanced understanding of complex systems. A mathematical model describing the viral infection dynamics reveals two transmissibility parameters influenced by the management strategies in the area for the control of the current pandemic. Both parameters readily yield the peak infection rate and means for flattening the curve, which is correlated to different management strategies by employing machine learning, enabling comparison of different strategies and suggesting timely alterations. Treatment of population data with the model shows that restricted non-essential business closure, school closing and strictures on mass gathering influence the spread of infection. While a rational strategy for initiation of an economic reboot would call for a wider perspective of the local economics, the model can speculate on its timing based on the status of the infection as reflected by its potential for an unacceptably renewed viral onslaught.
Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. Chinazzi, M. et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 368, 395–400 (2020).
2. Ferretti, L. et al. Quantifying sars-cov-2 transmission suggests epidemic control with digital contact tracing. Science 368, 2 (2020).
3. Bourouiba, L. Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19. JAMA 323, 1837–1838 (2020).
4. Guo, Z.-D. et al. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg. Infect. Dis. 26, 10–3201 (2020).
5. Lauer, S. A. et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Ann. Intern. Med. 172, 577–582 (2020).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献