Development and verification of a combined diagnostic model for primary Sjögren's syndrome by integrated bioinformatics analysis and machine learning

Author:

Yang Kun,Wang Qi,Wu Li,Gao Qi-Chao,Tang Shan

Abstract

AbstractPrimary Sjögren’s syndrome (pSS) is a chronic, systemic autoimmune disease mostly affecting the exocrine glands. This debilitating condition is complex and specific treatments remain unavailable. There is a need for the development of novel diagnostic models for early screening. Four gene profiling datasets were downloaded from the Gene Expression Omnibus database. The ‘limma’ software package was used to identify differentially expressed genes (DEGs). A random forest-supervised classification algorithm was used to screen disease-specific genes, and three machine learning algorithms, including artificial neural networks (ANN), random forest (RF), and support vector machines (SVM), were used to build a pSS diagnostic model. The performance of the model was measured using its area under the receiver operating characteristic curve. Immune cell infiltration was investigated using the CIBERSORT algorithm. A total of 96 DEGs were identified. By utilizing a RF classifier, a set of 14 signature genes that are pivotal in transcription regulation and disease progression in pSS were identified. Through the utilization of training and testing datasets, diagnostic models for pSS were successfully designed using ANN, RF, and SVM, resulting in AUCs of 0.972, 1.00, and 0.9742, respectively. The validation set yielded AUCs of 0.766, 0.8321, and 0.8223. It was the RF model that produced the best prediction performance out of the three models tested. As a result, an early predictive model for pSS was successfully developed with high diagnostic performance, providing a valuable resource for the screening and early diagnosis of pSS.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3