In-Liquid Lateral Force Microscopy of Micropatterned Surfaces in a Fatty Acid Solution under Boundary Lubrication

Author:

Tsuchiko Masaki,Aoki SaikoORCID

Abstract

Abstract This study aims to investigate the influence of surface morphology on boundary-lubricated friction in a stearic acid solution. The surface morphology was controlled by fabricating submicrometer line-and-space patterns on Si(100) surface via photolithography. The boundary-lubricated friction on the patterns was measured by in-liquid lateral force microscopy for both transverse and longitudinal ridges, with respect to the sliding direction; the highest friction was observed on longitudinal ridges and grooves, which is in agreement with the tendency observed in our previous friction studies on steel surfaces. To further investigate this phenomenon, some additional patterns having different submicrometer morphologies were prepared and their friction characteristics were investigated. On the patterns not allowing the fluid to flow along the grooves, the frictional forces were equivalent for transverse and longitudinal grooves and ridges. Therefore, the high friction observed on the longitudinal ridges was caused by flowing out of fluid along the grooves, and it was possible to conclude that the fluidity around the submicrometer ridges and grooves influences the friction-reducing effect of stearic acid in boundary lubrication regime.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3