Ascorbate oxidation by iron, copper and reactive oxygen species: review, model development, and derivation of key rate constants

Author:

Shen Jiaqi,Griffiths Paul T.,Campbell Steven J.,Utinger Battist,Kalberer Markus,Paulson Suzanne E.

Abstract

AbstractAscorbic acid is among the most abundant antioxidants in the lung, where it likely plays a key role in the mechanism by which particulate air pollution initiates a biological response. Because ascorbic acid is a highly redox active species, it engages in a far more complex web of reactions than a typical organic molecule, reacting with oxidants such as the hydroxyl radical as well as redox-active transition metals such as iron and copper. The literature provides a solid outline for this chemistry, but there are large disagreements about mechanisms, stoichiometries and reaction rates, particularly for the transition metal reactions. Here we synthesize the literature, develop a chemical kinetics model, and use seven sets of laboratory measurements to constrain mechanisms for the iron and copper reactions and derive key rate constants. We find that micromolar concentrations of iron(III) and copper(II) are more important sinks for ascorbic acid (both AH2 and AH) than reactive oxygen species. The iron and copper reactions are catalytic rather than redox reactions, and have unit stoichiometries: Fe(III)/Cu(II) + AH2/AH  + O2 → Fe(III)/Cu(II) + H2O2 + products. Rate constants are 5.7 × 104 and 4.7 × 104 M−2 s−1 for Fe(III) + AH2/AH and 7.7 × 104 and 2.8 × 106 M−2 s−1 for Cu(II) + AH2/AH, respectively.

Funder

U.S. National Science Foundation

Swiss National Science Foundation

California Air Resources Board

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3