Evaluation of focus and deep learning methods for automated image grading and factors influencing image quality in adaptive optics ophthalmoscopy

Author:

Sampson Danuta M.,Alonso-Caneiro David,Chew Avenell L.,La Jonathan,Roshandel Danial,Wang Yufei,Khan Jane C.,Chelva Enid,Stevenson Paul G.,Chen Fred K.

Abstract

AbstractAdaptive optics flood illumination ophthalmoscopy (AO-FIO) is an established imaging tool in the investigation of retinal diseases. However, the clinical interpretation of AO-FIO images can be challenging due to varied image quality. Therefore, image quality assessment is essential before interpretation. An image assessment tool will also assist further work on improving the image quality, either during acquisition or post processing. In this paper, we describe, validate and compare two automated image quality assessment methods; the energy of Laplacian focus operator (LAPE; not commonly used but easily implemented) and convolutional neural network (CNN; effective but more complex approach). We also evaluate the effects of subject age, axial length, refractive error, fixation stability, disease status and retinal location on AO-FIO image quality. Based on analysis of 10,250 images of 50 × 50 μm size, at 41 retinal locations, from 50 subjects we demonstrate that CNN slightly outperforms LAPE in image quality assessment. CNN achieves accuracy of 89%, whereas LAPE metric achieves 73% and 80% (for a linear regression and random forest multiclass classifier methods, respectively) compared to ground truth. Furthermore, the retinal location, age and disease are factors that can influence the likelihood of poor image quality.

Funder

Ophthalmic Research Institute of Australia

Perth Children's Hospital Research Fund

Rebecca L. Cooper Medical Research Foundation

National Health and Medical Research Council

Department of Health, Government of Western Australia

McCusker Charitable Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3