FocA: A deep learning tool for reliable, near-real-time imaging focus analysis in automated cell assay pipelines

Author:

Winchell JeffORCID,Comolet GabrielORCID,Buckley-Herd GeoffORCID,Hutson Dillion,Bose NeeloyORCID,Paull DanielORCID,Migliori BiancaORCID

Abstract

AbstractThe increasing use of automation in cellular assays and cell culture presents significant opportunities to enhance the scale and throughput of imaging assays, but to do so, reliable data quality and consistency are critical. Realizing the full potential of automation will thus require the design of robust analysis pipelines that span the entire workflow in question. Here we present FocA, a deep learning tool that, in near real-time, identifies in-focus and out-of-focus images generated on a fully automated cell biology research platform, the NYSCF Global Stem Cell Array®. The tool is trained on small patches of downsampled images to maximize computational efficiency without compromising accuracy, and optimized to make sure no sub-quality images are stored and used in downstream analyses. The tool automatically generates balanced and maximally diverse training sets to avoid bias. The resulting model correctly identifies 100% of out-of-focus and 98% of in-focus images in under 4 seconds per 96-well plate, and achieves this result even in heavily downsampled data (∼30 times smaller than native resolution). Integrating the tool into automated workflows minimizes the need for human verification as well as the collection and usage of low-quality data. FocA thus offers a solution to ensure reliable image data hygiene and improve the efficiency of automated imaging workflows using minimal computational resources.

Publisher

Cold Spring Harbor Laboratory

Reference14 articles.

1. Abadi, M. , Agarwal, A. , Barham, P. , Brevdo, E. , Chen, Z. , Citro, C. , Corrado, G. S. , Davis, A. , Dean, J. , Devin, M. , Ghemawat, S. , Goodfellow, I. , Harp, A. , Irving, G. , Isard, M. , Jia, Y. , Jozefowicz, R. , Kaiser, L. , Kudlur, M. , … Zheng, X. (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems (arXiv:1603.04467). arXiv. http://arxiv.org/abs/1603.04467

2. Bray, M.-A. , Carpenter, A. , & Imaging Platform, Broad Institute of MIT and Harvard. (2004). Advanced Assay Development Guidelines for Image-Based High Content Screening and Analysis. In S. Markossian , A. Grossman , K. Brimacombe , M. Arkin , D. Auld , C. Austin , J. Baell , T. D. Y. Chung , N. P. Coussens , J. L. Dahlin , V. Devanarayan , T. L. Foley , M. Glicksman , K. Gorshkov , J. V. Haas , M. D. Hall , S. Hoare , J. Inglese , P. W. Iversen , … X. Xu (Eds.), Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences. http://www.ncbi.nlm.nih.gov/books/NBK126174/

3. Workflow and Metrics for Image Quality Control in Large-Scale High-Content Screens;SLAS Discovery,2012

4. SMOTE: Synthetic Minority Over-sampling Technique;Journal of Artificial Intelligence Research,2002

5. Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals;Computational Economics,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3