Author:
Mori Jinichi,Kaji Shizuo,Kawai Hiroki,Kida Satoshi,Tsubokura Masaharu,Fukatsu Masahiko,Harada Kayo,Noji Hideyoshi,Ikezoe Takayuki,Maeda Tomoya,Matsuda Akira
Abstract
AbstractIn this study, we developed the world's first artificial intelligence (AI) system that assesses the dysplasia of blood cells on bone marrow smears and presents the result of AI prediction for one of the most representative dysplasia—decreased granules (DG). We photographed field images from the bone marrow smears from patients with myelodysplastic syndrome (MDS) or non-MDS diseases and cropped each cell using an originally developed cell detector. Two morphologists labelled each cell. The degree of dysplasia was evaluated on a four-point scale: 0–3 (e.g., neutrophil with severely decreased granules were labelled DG3). We then constructed the classifier from the dataset of labelled images. The detector and classifier were based on a deep neural network pre-trained with natural images. We obtained 1797 labelled images, and the morphologists determined 134 DGs (DG1: 46, DG2: 77, DG3: 11). Subsequently, we performed a five-fold cross-validation to evaluate the performance of the classifier. For DG1–3 labelled by morphologists, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were 91.0%, 97.7%, 76.3%, 99.3%, and 97.2%, respectively. When DG1 was excluded in the process, the sensitivity, specificity, PPV, NPV, and accuracy were 85.2%, 98.9%, 80.6%, and 99.2% and 98.2%, respectively.
Funder
Specified Nonprofit Corporation Institute of Medical Care and Societal Health
Publisher
Springer Science and Business Media LLC
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献