Leveraging deep learning for detecting red blood cell morphological changes in blood films from children with severe malaria anaemia

Author:

Moysis Ezer1,Brown Biobele J.234,Shokunbi Wuraola35,Manescu Petru1,Fernandez‐Reyes Delmiro1234ORCID

Affiliation:

1. Department of Computer Science, Faculty of Engineering Sciences University College London London UK

2. Department of Paediatrics, College of Medicine University of Ibadan University College Hospital Ibadan Nigeria

3. Childhood Malaria Research Group, College of Medicine University of Ibadan University College Hospital Ibadan Nigeria

4. African Computational Sciences Centre for Health and Development University of Ibadan Ibadan Nigeria

5. Department of Haematology, College of Medicine University of Ibadan University College Hospital Ibadan Nigeria

Abstract

SummaryIn sub‐Saharan Africa, acute‐onset severe malaria anaemia (SMA) is a critical challenge, particularly affecting children under five. The acute drop in haematocrit in SMA is thought to be driven by an increased phagocytotic pathological process in the spleen, leading to the presence of distinct red blood cells (RBCs) with altered morphological characteristics. We hypothesized that these RBCs could be detected systematically and at scale in peripheral blood films (PBFs) by harnessing the capabilities of deep learning models. Assessment of PBFs by a microscopist does not scale for this task and is subject to variability. Here we introduce a deep learning model, leveraging a weakly supervised Multiple Instance Learning framework, to Identify SMA (MILISMA) through the presence of morphologically changed RBCs. MILISMA achieved a classification accuracy of 83% (receiver operating characteristic area under the curve [AUC] of 87%; precision‐recall AUC of 76%). More importantly, MILISMA's capabilities extend to identifying statistically significant morphological distinctions (p < 0.01) in RBCs descriptors. Our findings are enriched by visual analyses, which underscore the unique morphological features of SMA‐affected RBCs when compared to non‐SMA cells. This model aided detection and characterization of RBC alterations could enhance the understanding of SMA's pathology and refine SMA diagnostic and prognostic evaluation processes at scale.

Funder

Engineering and Physical Sciences Research Council

National Institute for Health and Care Research

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3