Author:
Korbekandi Mehri Moeini,Mohammadpoor-Baltork Iraj,Moghadam Majid,Tangestaninejad Shahram,Mirkhani Valiollah,Notash Behrouz
Abstract
AbstractIn this research, a new Lewis acid-based deep eutectic solvent (LA-DES) was synthesized using diphenhydramine hydrochloride and CoCl2·6H2O, (2[HDPH]:CoCl42−), and identified by FT-IR and 1HNMR techniques. The physicochemical properties of this LA-DES, such as thermal behavior, thermal stability, and solubility in common solvents were also investigated. The catalytic ability of 2[HDPH]:CoCl42− was ascertained in the efficient synthesis of a novel array of thiadiazolo[2,3-b]quinazolin-6-one scaffolds via a one-pot three-component reaction of dimedone/1,3-cyclohexanedione, aldehydes, and 5-aryl-1,3,4-thiadiazol-2-amines/3-(5-amino-1,3,4-thiadiazol-2-yl)-2H-chromen-2-one under solvent-free conditions. This catalyst was also successfully utilized for the synthesis of mono- and bis-thiadiazolo[2,3-b]quinazolin-6-ones from dialdehydes or bis-1,3,4-thiadiazol-2-amine. The simplicity of enforcement, short reaction time, avoidance of toxic organic solvents, scalability of the synthesis procedure, excellent atom economy, high reaction mass efficiency, and low E-factor are other outstanding advantages of this newly developed method. Furthermore, due to the convenient recovery and reuse of LA-DES, this protocol is economically justified and environmentally friendly.
Publisher
Springer Science and Business Media LLC