Optical tracking and laser-induced mortality of insects during flight

Author:

Keller Matthew D.,Norton Bryan J.,Farrar David J.,Rutschman Phil,Marvit Maclen,Makagon Arty

Abstract

AbstractAddressing the need for novel insect observation and control tools, the Photonic Fence detects and tracks mosquitoes and other flying insects and can apply lethal doses of laser light to them. Previously, we determined lethal exposure levels for a variety of lasers and pulse conditions on anesthetized Anopheles stephensi mosquitoes. In this work, similar studies were performed while the subjects were freely flying within transparent cages two meters from the optical system; a proof-of-principle demonstration of a 30 m system was also performed. From the dose–response curves of mortality data created as a function of various beam diameter, pulse width, and power conditions at visible and near-infrared wavelengths, the visible wavelengths required significantly lower laser exposure than near infrared wavelengths to disable subjects, though near infrared sources remain attractive given their cost and retina safety. The flight behavior of the subjects and the performance of the tracking system were found to have no impact on the mortality outcomes for pulse durations up to 25 ms, which appears to be the ideal duration to minimize required laser power. The results of this study affirm the practicality of using optical approaches to protect people and crops from pestilent flying insects.

Funder

Global Good Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3