Temperature Dependency of Insect’s Wingbeat Frequencies: An Empirical Approach to Temperature Correction

Author:

Saha Topu1ORCID,Genoud Adrien P.2ORCID,Park Jung H.3,Thomas Benjamin P.1ORCID

Affiliation:

1. Department of Physics, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA

2. Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, F-69100 Villeurbanne, France

3. Department of Data Science, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA

Abstract

This study examines the relationship between the wingbeat frequency of flying insects and ambient temperature, leveraging data from over 302,000 insect observations obtained using a near-infrared optical sensor during an eight-month field experiment. By measuring the wingbeat frequency as well as wing and body optical cross-sections of each insect in conjunction with the ambient temperature, we identified five clusters of insects and analyzed how their average wingbeat frequencies evolved over temperatures ranging from 10 °C to 38 °C. Our findings reveal a positive correlation between temperature and wingbeat frequency, with a more pronounced increase observed at higher wingbeat frequencies. Frequencies increased on average by 2.02 Hz/°C at 50 Hz, and up to 9.63 Hz/°C at 525 Hz, and a general model is proposed. This model offers a valuable tool for correcting wingbeat frequencies with temperature, enhancing the accuracy of insect clustering by optical and acoustic sensors. While this approach does not account for species-specific responses to temperature changes, our research provides a general insight, based on all species present during the field experiment, into the intricate dynamics of insect flight behavior in relation to environmental factors.

Funder

National Institutes of Health

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3