QAmplifyNet: pushing the boundaries of supply chain backorder prediction using interpretable hybrid quantum-classical neural network

Author:

Jahin Md Abrar,Shovon Md Sakib Hossain,Islam Md. Saiful,Shin Jungpil,Mridha M. F.,Okuyama Yuichi

Abstract

AbstractSupply chain management relies on accurate backorder prediction for optimizing inventory control, reducing costs, and enhancing customer satisfaction. Traditional machine-learning models struggle with large-scale datasets and complex relationships. This research introduces a novel methodological framework for supply chain backorder prediction, addressing the challenge of collecting large real-world datasets with 90% accuracy. Our proposed model demonstrates remarkable accuracy in predicting backorders on short and imbalanced datasets. We capture intricate patterns and dependencies by leveraging quantum-inspired techniques within the quantum-classical neural network QAmplifyNet. Experimental evaluations on a benchmark dataset establish QAmplifyNet’s superiority over eight classical models, three classically stacked quantum ensembles, five quantum neural networks, and a deep reinforcement learning model. Its ability to handle short, imbalanced datasets makes it ideal for supply chain management. We evaluate seven preprocessing techniques, selecting the best one based on logistic regression’s performance on each preprocessed dataset. The model’s interpretability is enhanced using Explainable artificial intelligence techniques. Practical implications include improved inventory control, reduced backorders, and enhanced operational efficiency. QAmplifyNet also achieved the highest F1-score of 94% for predicting “Not Backorder” and 75% for predicting “backorder,” outperforming all other models. It also exhibited the highest AUC-ROC score of 79.85%, further validating its superior predictive capabilities. QAmplifyNet seamlessly integrates into real-world supply chain management systems, empowering proactive decision-making and efficient resource allocation. Future work involves exploring additional quantum-inspired techniques, expanding the dataset, and investigating other supply chain applications. This research unlocks the potential of quantum computing in supply chain optimization and paves the way for further exploration of quantum-inspired machine learning models in supply chain management. Our framework and QAmplifyNet model offer a breakthrough approach to supply chain backorder prediction, offering superior performance and opening new avenues for leveraging quantum-inspired techniques in supply chain management.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3