Free light-shape focusing in extreme-ultraviolet radiation with self-evolutionary photon sieves

Author:

Cui Huaiyu,Zhang Xiuping,Li You,Zhao Dongdi,Zhang Junyong,Zhao Yongpeng

Abstract

AbstractExtreme-ultraviolet (EUV) radiation is a promising tool, not only for probing microscopic activities but also for processing nanoscale structures and performing high-resolution imaging. In this study, we demonstrate an innovative method to generate free light-shape focusing with self-evolutionary photon sieves under a single-shot coherent EUV laser; this includes vortex focus shaping, array focusing, and structured-light shaping. The results demonstrate that self-evolutionary photon sieves, consisting of a large number of specific pinholes fabricated on a piece of Si3N4 membrane, are capable of freely regulating an EUV light field, for which high-performance focusing elements are extremely lacking, let alone free light-shape focusing. Our proposed versatile photon sieves are a key breakthrough in focusing technology in the EUV region and pave the way for high-resolution soft X-ray microscopy, spectroscopy in materials science, shorter lithography, and attosecond metrology in next-generation synchrotron radiation and free-electron lasers.

Funder

National Natural Science Foundation of China

Shanghai Sailing Program

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3