Attosecond band-gap dynamics in silicon

Author:

Schultze Martin12,Ramasesha Krupa1,Pemmaraju C.D.3,Sato S.A.4,Whitmore D.1,Gandman A.1,Prell James S.1,Borja L. J.1,Prendergast D.3,Yabana K.45,Neumark Daniel M.16,Leone Stephen R.167

Affiliation:

1. Department of Chemistry, University of California, Berkeley, CA 94720, USA.

2. Fakultät für Physik, Ludwig-Maximilians-Universität, Am Coulombwall 1, D-85748 Garching, Germany.

3. The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

4. Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan.

5. Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.

6. Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

7. Department of Physics, University of California, Berkeley, CA 94720, USA.

Abstract

Electron transfer from valence to conduction band states in semiconductors is the basis of modern electronics. Here, attosecond extreme ultraviolet (XUV) spectroscopy is used to resolve this process in silicon in real time. Electrons injected into the conduction band by few-cycle laser pulses alter the silicon XUV absorption spectrum in sharp steps synchronized with the laser electric field oscillations. The observed ~450-attosecond step rise time provides an upper limit for the carrier-induced band-gap reduction and the electron-electron scattering time in the conduction band. This electronic response is separated from the subsequent band-gap modifications due to lattice motion, which occurs on a time scale of 60 ± 10 femtoseconds, characteristic of the fastest optical phonon. Quantum dynamical simulations interpret the carrier injection step as light-field–induced electron tunneling.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 431 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3