Bayesian ridge regression shows the best fit for SSR markers in Psidium guajava among Bayesian models

Author:

da Silva Flavia AlvesORCID,Viana Alexandre PioORCID,Correa Caio Cezar GuedesORCID,Santos Eileen AzevedoORCID,de Oliveira Julie Anne Vieira SalgadoORCID,Andrade José Daniel GomesORCID,Ribeiro Rodrigo MoreiraORCID,Glória Leonardo SiqueiraORCID

Abstract

AbstractMarkers are an important tool in plant breeding, which can improve conventional phenotypic breeding, generating more accurate information outcoming better decision making. This study aimed to apply and compare the fit of different Bayesian models BRR, BayesA, BayesB, BayesB (setting the value from very low to $$\pi$$ π = $${10}^{-5}$$ 10 - 5 ), BayesC and Bayesian Lasso (LASSO) for predictions of the genomic genetic values of productivity and quality traits of a guava population. The models were fitted for traits fruit mass, pulp mass, soluble solids content, fruit number, and production per plant in the genomic prediction with SSR markers, obtained through the CTAB extraction method with 200 primers. The Bayesian ridge regression model showed the best results for all traits and was chosen to predict the individual’s genomic values according to the cross-validation data. A good stabilization of the Markov and Monte Carlo chains was observed with the mean values close to the observed phenotypic means. Heritabilities showed good predictive accuracy. The model showed strong correlations between some traits, allowing indirect selection.

Funder

Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3