Assessing groundwater denitrification spatially is the key to targeted agricultural nitrogen regulation

Author:

Hansen Birgitte,Aamand Jens,Blicher-Mathiesen Gitte,Christiansen Anders V.,Claes Niels,Dalgaard Tommy,Frederiksen Rasmus R.,Jacobsen Brian H.,Jakobsen Rasmus,Kallesøe Anders,Kim Hyojin,Koch Julian,Møller Ingelise,Madsen Rasmus B.,Schaper Stefan,Sandersen Peter B. E.,Voutchkova Denitza D.,Wiborg Irene

Abstract

AbstractGlobally, food production for an ever-growing population is a well-known threat to the environment due to losses of excess reactive nitrogen (N) from agriculture. Since the 1980s, many countries of the Global North, such as Denmark, have successfully combatted N pollution in the aquatic environment by regulation and introduction of national agricultural one-size-fits-all mitigation measures. Despite this success, further reduction of the N load is required to meet the EU water directives demands, and implementation of additional targeted N regulation of agriculture has scientifically and politically been found to be a way forward. In this paper, we present a comprehensive concept to make future targeted N regulation successful environmentally and economically. The concept focus is on how and where to establish detailed maps of the groundwater denitrification potential (N retention) in areas, such as Denmark, covered by Quaternary deposits. Quaternary deposits are abundant in many parts of the world, and often feature very complex geological and geochemical architectures. We show that this subsurface complexity results in large local differences in groundwater N retention. Prioritization of the most complex areas for implementation of the new concept can be a cost-efficient way to achieve lower N impact on the aquatic environment.

Funder

Innovation Fund Denmark

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3