Author:
Gault Stewart,Jaworek Michel W.,Winter Roland,Cockell Charles S.
Abstract
AbstractStudies of salt effects on enzyme activity have typically been conducted at standard temperatures and pressures, thus missing effects which only become apparent under non-standard conditions. Here we show that perchlorate salts, which are found pervasively on Mars, increase the activity of α-chymotrypsin at low temperatures. The low temperature activation is facilitated by a reduced enthalpy of activation owing to the destabilising effects of perchlorate salts. By destabilising α-chymotrypsin, the perchlorate salts also cause an increasingly negative entropy of activation, which drives the reduction of enzyme activity at higher temperatures. We have also shown that α-chymotrypsin activity appears to exhibit an altered pressure response at low temperatures while also maintaining stability at high pressures and sub-zero temperatures. As the effects of perchlorate salts on the thermodynamics of α-chymotrypsin’s activity closely resemble those of psychrophilic adaptations, it suggests that the presence of chaotropic molecules may be beneficial to life operating in low temperature environments.
Funder
Engineering and Physical Sciences Research Council
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献