Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet

Author:

Shoaib Muhammad,Raja Muhammad Asif Zahoor,Sabir Muhammad Touseef,Islam Saeed,Shah Zahir,Kumam Poom,Alrabaiah Hussam

Abstract

Abstract This research investigates the heat and mass transfer in 3-D MHD radiative flow of water based hybrid nanofluid over an extending sheet by employing the strength of numerical computing based Lobatto IIIA method. Nanoparticles of aluminum oxide (Al2O3) and silver (Ag) are being used with water (H2O) as base fluid. By considering the heat transfer phenomenon due to thermal radiation effects. The physical flow problem is then modeled into set of PDEs, which are then transmuted into equivalent set of nonlinear ODEs by utilizing the appropriate similarity transformations. The system of ODEs is solved by the computational strength of Lobatto IIIA method to get the various graphical and numerical results for analyzing the impact of various physical constraints on velocity and thermal profiles. Additionally, the heat transfers and skin friction analysis for the fluid flow dynamics is also investigated. The relative errors up to the accuracy level of 1e-15, established the worth and reliability of the computational technique. It is observed that heat transfer rate increases with the increase in magnetic effect, Biot number and rotation parameter.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3