Author:
Khan Sami Ullah,Al-Khaled Kamel,Aldabesh A.,Awais Muhammad,Tlili Iskander
Abstract
AbstractOn the account of significance of bioconvection in biotechnology and several biological systems, valuable contributions have been performed by scientists in current decade. In current framework, a theoretical bioconvection model is constituted to examine the analyzed the thermally developed magnetized couple stress nanoparticles flow by involving narrative flow characteristics namely activation energy, chemical reaction and radiation features. The accelerated flow is organized on the periodically porous stretched configuration. The heat performances are evaluated via famous Buongiorno’s model which successfully reflects the important features of thermophoretic and Brownian motion. The composed fluid model is based on the governing equations of momentum, energy, nanoparticles concentration and motile microorganisms. The dimensionless problem has been solved analytically via homotopic procedure where the convergence of results is carefully examined. The interesting graphical description for the distribution of velocity, heat transfer of nanoparticles, concentration pattern and gyrotactic microorganism significance are presented with relevant physical significance. The variation in wall shear stress is also graphically underlined which shows an interesting periodic oscillation near the flow domain. The numerical interpretation for examining the heat mass and motile density transfer rate is presented in tubular form.
Publisher
Springer Science and Business Media LLC
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献