Interfacial dynamics of two immiscible second-grade and couple stress fluids in rotating and counter-rotating scenarios

Author:

Bashir SammarORCID,Sajid Muhammad

Abstract

Abstract This article aims to examine the dynamics of interfacial flow that occurs when a layer of second-grade fluid rotates over another layer of uniformly rotating immiscible couple stress fluid. Fluid models with different densities, pressures, velocities, and viscosities exhibit intriguing flow properties. Under the restriction of parameter σ 2 ρ = 1 , where σ = ω 2 / ω 1 (angular velocities ratio) and ρ = ρ 2 / ρ 1 (densities ratio), the occurrence of similarity solutions under coupling and viscoelastic effects across the interface for both cases of co-and-counter rotation is investigated. In contrast to the rotation of upper fluid, the couple stress fluid layer can counter-rotate. An advanced numerical method known as the Keller box is employed to thoroughly analyze the multiple aspects of the flow. The dominance of the couple stress fluid has been observed in shaping the dynamics of interfacial flow, significantly impacting phenomena such as the generation of inward/outward jets, Ekman pumping/suction, and the development of recirculation regions. Lower-layer far-field flow demonstrates transitions, oscillating between inflow and outflow, depending on parameters μ and σ . These findings illustrate an interesting interplay between rheological parameters, providing perspectives into the complicated behaviors of immiscible rotating fluids under different characteristics and useful implications for a variety of practical applications.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3