Novel EGFP reporter cell and mouse models for sensitive imaging and quantification of exon skipping

Author:

Hara Yuko,Mizobe Yoshitaka,Inoue Yukiko U.ORCID,Hashimoto Yasumasa,Motohashi NorioORCID,Masaki Yoshiaki,Seio Kohji,Takeda Shin’ichiORCID,Nagata Tetsuya,Wood Matthew J. A.,Inoue Takayoshi,Aoki YoshitsuguORCID

Abstract

AbstractDuchenne muscular dystrophy (DMD) is a fatal X-linked disorder caused by nonsense or frameshift mutations in the DMD gene. Among various treatments available for DMD, antisense oligonucleotides (ASOs) mediated exon skipping is a promising therapeutic approach. For successful treatments, however, it is requisite to rigorously optimise oligonucleotide chemistries as well as chemical modifications of ASOs. To achieve this, here, we aim to develop a novel enhanced green fluorescence protein (EGFP)-based reporter assay system that allows us to perform efficient and high-throughput screenings for ASOs. We design a new expression vector with a CAG promoter to detect the EGFP fluorescence only when skipping of mdx-type exon 23 is induced by ASOs. Then, an accurate screening was successfully conducted in C57BL/6 primary myotubes using phosphorodiamidate morpholino oligomer or locked nucleic acids (LNA)/2′-OMe mixmers with different extent of LNA inclusion. We accordingly generated a novel transgenic mouse model with this EGFP expression vector (EGFP-mdx23 Tg). Finally, we confirmed that the EGFP-mdx23 Tg provided a highly sensitive platform to check the effectiveness as well as the biodistribution of ASOs for exon skipping therapy. Thus, the assay system provides a simple yet highly sensitive platform to optimise oligonucleotide chemistries as well as chemical modifications of ASOs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3